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Abstract 

Most of image processing systems have been designed 
independent of image contents. Now, evolving computation 
power is making the “image-dependent” elegant algorithms 
possible to get the better color image renditions. 

This paper introduces our recent approaches to quality 
and pleasant imaging based on image-dependence. The key 
technologies are represented by segmentation and multi- 
scale. The source colors are transformed to the preferred 
reference colors in the segmented sub-spaces better than in 
the entire space. The spatial filtering works better if the 
multi-scale kernel is selected than a fixed single kernel. The 
typical applications of these key technologies are presented. 

Introduction 

The concept of “device-independent” has unified the stage 
of color interchange between the different devices, media, 
and systems. But, so far, a variety of image processing 
systems have been designed independent of image contents. 
Now, evolving computation power is making it possible to 
apply “image-dependent”1 elegant algorithms to get the 
better color renditions. 

This paper introduces our recent approaches to high 
quality and pleasant imaging based on the concept of 
image-dependence. To process the image dependent of its 
content, we apply the common key technologies repre-
sented by segmentation and multi-scale. For example, the 
source colors are matched to the destination colors or 
transformed to the preferred reference colors in the seg-
mented sub-spaces better than in the entire space. As well, 
spatial filtering works better if the multi-scale kernel is 
selected than a fixed single kernel. Fig.1 shows a con-
ceptual view of the system. 
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Figure 1. Concept of Image-dependent Rendition 

The following typical applications are presented in this 
paper. 
• Image-dependent preferred color transform:  
• Image-dependent sharpness control 
• Image-dependent 3D gamut mapping 
• Image-dependent dynamic range control 

Image-dependent Preferred Color Transform  

A  composed nt  
distinguished from others that are distributed in clusters in 
3D color space. The intent of preferred color reproduction 
is to colored object. Fig. 2 shows an object-to-object color 
transform system.2 In the preferred color reproduction 
approach, the key color areas such as flesh tint, blue sky, or 
green grass are extracted by image segmentation and 
automatically matched to the desirable reference colors. In 
this model, PCA matching applies K sets of transform 
matrices dependent on the colored objects. 

Extraction of Key Color Areas by Segmentation  
The key color areas are extracted through the following 

two steps segmentation process.  

[Step1: Classification of Color Cluster] 
 
First, the clustered color objects are separated by the 
statistical classifier. For example, Bayesian decision rule 
classifies each pixel color vector X into the class k=c group 
with the maximum likelihood to minimize the following 
discrimination function. 
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p(k): occurrence probability of class k   (1) 

[Step2: Symbolic Segmentation by JSEG] 
 

The step1 gives rough segmentation of key objects but 
clustering errors happen in mixed color areas with texture. 
The step2 JSEG algorithm2 makes the ambiguous boundar-
ies clear by merging the closest classes based on symbolic 
distance measure. JSEG converts the labeled image by class 
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number into J-image. J-image is composed of J values 
characterized by the relative symbolic distance from the 
overall center to each class center as follows. 
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Where, z , m and mk denote the geometric coordinates 
of symbolized class z, overall mean center, and each class 
center, respectively.  

[Step3: Object-to-Object PC Matching]  
Finally, a segmented key color area is transformed into 

the preferred color for their principal component (PC) to be 
matched to the trained reference color. The PC matching is 
done for typical memory colors such as skin, blue sky, or 
green grass, by operating the following matrix3 kMC 

( )( )( )ORGkREFCk ASAM 1−=     (4) 

Where k
A

ORG and k
A

REF denote the eigen matrices for original 
segment in class k and corresponding reference color and k

S 
denotes the scaling matrix.  
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Figure 2. Concept of Object-to-object PC Color Matching 

Transformation to Preferred Reference Colors 
Fig. 3 (a) shows a preferred color transform result for 

the test image “Palace garden” including dull blue sky, dark 
green grass, drab red and yellow flowers. These key color 
areas are almost well segmented through step1 and step2, 
then transformed to the clear blue sky, bright green grass, 
and vivid red flower trained beforehand. Fig. 3(b) is another 

example for portrait, where blue sky and skin color areas 
are transformed to the trained reference colors. In this 
sample, dull blue sky is converted into clear sky very well. 
Although the facial skin color is also changed into fresh 
tint, but looks unnatural just like as doll’s face. The reason 
may be in the unsuitable training for preferred skin color. 
The trained reference color samples must be distributed in 
narrow deviation of principal components axes like as 
doll’s face.  

Any interactive selection system using LUT will be 
necessary for the better setting of reference colors. 

 
 
 
 
 

 
(a) Garden original             segmented                transformed 
 
 
 
 
 
 
 
 

 
(b) Face original            segmented               transformed 

Figure 3. Color transform to trained preferred references 

Image-dependent Sharpening 

The color image has the different edge profiles depending 
on the contents of the scene. In the conventional edge 
enhancement method, a single sharpness filter such as 
digital Laplacian or un-sharp mask operator is applied to 
the entire image independent of the objects. The non-
adaptive single sharpness filter has the drawbacks such as 
enhancement of random noise in flat area or insensitivity to 
the dull edges. The conventional sharpness operator such as 
digital Laplacian can’t create the natural edge sharpness, 
because it has local edge responses different from receptive 
field in human vision. In our image- dependent sharpening 
system, the multiple sharpening filters are applied to work 
adaptive to the different edge slopes.  

Edge Detection Operator 
A variety of simple cell receptive field models for 

human vision have been considered such as Gaussian 
Derivative (GD), Gabor, DOG, DOOG, or DODOG. 
Young4 and others reported GD is the best to minimize the 
joint space-spatial frequency uncertainty ∆x•∆ω. The 
proposed model also used GD-based operator. The basic 
Gaussian distribution function in two dimensions is defined 
by 
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1  r 2  
G(r) = 

2πσ 2 
exp

− 
2σ 2 

 ; r 2 = x2 + y 2 (6) 
  

Its second derivative is given by 

1  r 2   2  
∇ 2G =

πσ 4 
 

2σ 2 
− 1

 exp
− r  (7) 

  2σ 2  

The edge signals are extracted from an image f(x, y) by 
the two-dimensional convolution operation as 

⋅δm (x, y) = ∇2Gm < * > f (x, y) (8) 

Where, symbol <*> denotes the convolution operation 
and m means filter kernel size. The edge sharpness is 
measured by operating the pre-scan filter ∇2GS with 
appropriate standard deviation σS. 

Edge-adaptive Multi-Scale Sharpening 
Figure 4 illustrates the sharpening process in the 

5 proposed system. First, the RGB image is transformed into 
luminance-chrominance image such as YC Cb or YIQ. The r 

edge enhancement filter is applied only to the luminance Y 
image to keep the gray balance on the edges. After pre
scanning the Y image by sharp GD filter ∇2GS, the edge 
profiles are classified into hard, medium, soft, and flat types 
by analyzing the histogram of δS.(x, y). Thus the zone mask 
M.(x, y) is generated to discriminate these edge types. Next, 
the multiple GD operators ∇2G with different standard 
deviations, σ1, σ2, and σ3 are applied to Y image and the 
corresponding edge signals, that is, hard edge δ1(x, y), 
medium edge δ2(x, y), or soft edge δ3(x, y) are detected in 
response to the different edge slopes in the image. 

These edge signals are selectively activated by looking 
up the zone mask plane M.(x, y) to discriminate the edge 
types. Thirdly, the Y image is sharpened by subtracting this 
edge adaptive GD signal δ(x, y) from image f(x, y) as 
follows. 

f’(x, y)=f(x, y)  . 
δ(x, y)  (9) 

Except these three types of filtering, the flat/gentle 
slope areas are left unprocessed to keep original or 
intentionally smoothed by operating the normal Gaussian 
filter. This brought dramatic improvement in the 
suppression of background random noises. 

Finally, the original Y image is replaced by sharpened 
luminance image Y’ and converted into R’G’B’ primary 
color image from Y’C Cb image by inverse transform. r 

Figure 5 shows a result of the proposed multi-scale 
sharpening method. The blurred input image is sharpened 
by switching the multiple GD filters quickly looking up the 
zone mask plane. The zone mask plane is colored by 
red=hard, green= medium, blue=soft edges, and black=flat 
area. As compared with conventional single filtering, the 
facial areas recognized flat are very smoothly rendered with 
the reduction of background noises and other edge areas are 
naturally sharpened adaptive to the edge profiles. 
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The kernel size of GD filters would be ±3σS ~ ±4σS, 
and the standard deviation σS must be decided corre-
sponding to the edge profiles of segmented zone mask. The 
automatic classification of edge type based on edge 
histogram and the decision of optimum σS are under 
development.  

Image-dependent Gamut Mapping 

So far most of GMA6 were designed to work in segmented 
2D L-C planes based on Device-to- Device (D-D) concept, 
not Image-to- Device (I-D). They don’t reflect the image 
gamut exactly. In the current 2D D-D GMA, the source 
color s is mapped to the destination t in relation to the 
monitor gamut boundary m vs. printer’s boundary o toward 
a focal point p. However, the saturation and gradation 
losses will happen after the mapping, because the image 
color distributions don’t always fill the entire monitor 
gamut. While, the I-D GMA7 uses the image gamut 
boundary i instead of m, then it can suppress such losses in 
minimum as shown in Fig. 6. Clearly, I-D GMA is better 
than D-D and 3D than 2D. We developed the seamless 3D 
I-D GMA8,9 based on image-dependent. In the I-D GMA, 
the image gamut boundary plays an important role. Figure 7 
(a) shows a simple way to extract the 3D image gamut 
boundary by dividing the entire color space into small 
segment by constant radial angle (∆θ, ∆ϕ) and extracting 
the maximum radial vector in each segment as follows.  
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Figure 6. Basic concept of I-D GMA 

The 3D I-D mapping is performed in efficient by 
comparing the extracted radial vectors between image and 
device. Figure 7 (b) shows an example of 3D gamut shapes 
by radial vectors for a CG image and Epson inkjet printer. 
The magnitudes of the maximum radial vectors are 
rearranged in θ−ϕ coordinate and converted to 2D gray 
scale  r-image10 It be  
compressed by conventional picture coding system and 
attached to original image used for I-D GMA at user side.  
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(a) I-D gamut extraction in ∆θ-∆ϕ segment 

 

 (b) Image vs Device gamut by maximum radial vectors   

Figure 7. 3D gamut boundary description by radial vector  

 
Figure 8 shows the r-image for test image “wool” 

compressed to only 200 bytes by wavelet coding and its 
reconstructed gamut shell shape. When the 3D gamut shell 
shape has the smoothed surface, the r-image will be highly 
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correlated in row and column. In such case, it can be 
compactly compressed by applying the SVD (Singular 
Value Decomposition) or conventional transform coding 
methods. Indeed, the complicated gamut shell shapes could 
be well described less than 500 bytes.  
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Figure 8. Compact Image gamut description by r-image 
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Figure 9. Gamut compression by 3D I-D GMA  

Figure 9(c) is a gamut compression result for CG 
image by our 3D I-D GMA compared with conventional 
clipping GMA in (a) and 2D I-D GMA in (b). As shown 
clearly in the right side “persimmon”, unacceptable heavy 
artifacts due to the gradation loss in (a) and (b) are naturally 
reproduced in (c). 

Automatic Dynamic Range Control 

The last topic is addressed to image-dependent dynamic 
range control. Human vision perceives very wide range of 
lightness by adaptation mechanism. But the picture taken 
by electronic camera under the heavy change in highlight 
and shadow often looks different and unnatural from our 
visual perception. Land and McCann11 introduced Retinex 
model in human visual perception based on the relative 
lightness ratio product algorithm. It works to correct the 
scene lightness not by “pixel-to-pixel” but by “spatial-to-
pixel” process. Jobson,12 Rahman,13 Funt,14 and others are 
developing the single-scale retinex (SSR) into multi-scale 
retinex (MSR) based on the center/ surround model. 

To apply these models for automatic dynamic range 
control, the following processes were introduced.15 

 
• To avoid the instability in the logarithmic function of 

conventional Retinex, the linear lightness ratio is 
introduced to the pixel-to-surround computation. 

• The surround lightness field is extracted from region 
adaptive multiple Gaussian spatial filters. 
 
Here the retinex output Ri(x, y) for channel i=R, G, B 

input Ii(x, y) is given by 

( (
([ ([ ([ yx,YGyx,YGyx,YGSEL

yx,I
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M21

i
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=
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( ) ( ( ( yx,Byx,Gyx,Ryx,Y 0.1140.5870.299 ++=   

( ){ } 1=+= ∫∫ dxdyG,yx/-KexpG m
222

mm σ    (11) 

 
Gm denotes Gaussian averaging filter with standard 

deviation σm for pixel-to-surround field and the symbol * 
denotes convolution operation. Each RGB channel output is 
calculated he pixel-to-surround io, here he 
surround is selected from the multi-scale convolutions with 
common luminance Y(x, y) to keep color balance. 

SEL〈•〉 means to select the appropriate kernel size for 
multi-scale Gaussian convolution adaptive to the spatial 
lightness distribution of the image in attention.      

Figure 11 illustrates the proposed adaptive MSR 
model.  

The linear ratio process works robust in the dark signal 
levels with random noises and makes it easy to normalize 
the dynamic range. The proposed model synthesizes 
surround lightness field adaptive to the complexity of local 
areas by applying the multi-resolution Gaussian filters.  
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Figure 10.  Multi-scale Linear Retinex Model 
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The proposed MSR worked well to compress the 
dynamic range without loosing the details and to enhance 
the visibility in shadow areas keeping the color balance and 
saturation as shown in Fig. 11. The visibilities of color 
checker placed in sunny and shade, or dark tunnel scene are 
dramatically improved. As well, the heavily de-saturated 
green field is vividly recovered. 

Conclusion and Discussion 

The image-dependent segmentation and multi-scale 
filtering techniques were introduced to control the quality 
and preference toward comfortable color image rendition. 
The key concept lies in that individual image should be 
processed dependent of its content and to communicate its 
intent. Here, four typical applications are individually 
processed according to each objective. The algorithms 
worked well in some part, but failed in other part. 

The first trial, image-dependent preferred color 
transform tells us the difficulties in accurate segmentation 
of colored objects in a natural scene. The small 
segmentation errors on the region boundary sometimes 
result in the fatal defect. 

The second application, image-dependent sharpening 
was most successful multi-scale processing. It also uses 
segmentation to classify the edge types, but the miss 
selection of edge type is very much out of question. 

The third, image-dependent gamut mapping will bring 
the more flexible cross-media color management at user 
side. 

The last, automatic dynamic range control is the most 
familiar process to be applied to digital photography. The 
advances in retinex model is expected to reproduce the 
natural scene just as human vision do so. 
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